Location-based keyword search: enhancing IR-tree querying

Location-based and keyword search query has been increasing in popularity throughout the years. This type of query makes use of the location information and tagged documents to locate the top K most relevant point of interest. There exists an indexing framework, IR-Tree, that allows efficient proces...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Aik, Yu Chen
مؤلفون آخرون: Gao Cong
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2022
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/162865
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Location-based and keyword search query has been increasing in popularity throughout the years. This type of query makes use of the location information and tagged documents to locate the top K most relevant point of interest. There exists an indexing framework, IR-Tree, that allows efficient processing of such query by combining the use of inverted file for tagged documents and R-Tree for location information. However, there is still limitation on the I/O cost for loading the inverted files when processing a query. Therefore, in this paper an enhanced implementation of the IR-Tree that incorporate B+ Tree Indexing for the inverted files will be introduce. Result on the evaluation of the enhanced implementation also shows significant improvement on the performance.