Machine learning for anomaly detection on intelligent transportation time series data
In intelligent transportation systems, machine learning approaches are presented to deal with time series anomaly detection. But there are always far more normal samples, making it suffer from unbalanced samples for traffic anomaly detection. In this dissertation, based on the state-of-the-art model...
Saved in:
主要作者: | Lin, Yuxuan |
---|---|
其他作者: | Lin Zhiping |
格式: | Thesis-Master by Coursework |
語言: | English |
出版: |
Nanyang Technological University
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/163318 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Machine learning for time series analysis
由: Wang, Ruyue
出版: (2023) -
Machine learning and real-time prediction of human motion for intelligent human-machine interfaces
由: Chen, Yongming
出版: (2021) -
Machine learning based retinal vessel detection
由: Li, Hongru
出版: (2021) -
A sparse kernel algorithm for online time series data prediction
由: Fan, Haijin, et al.
出版: (2013) -
A machine learning-enabled mobile app for glaucoma detection
由: Toshiko, Seki Jennifer
出版: (2022)