Label-free assessment of differentiation efficiency in iPSC-derived spinal cord progenitor cells via Magnetic Resonance Relaxometry (MRR)
The advent of induced pluripotent stem cells (iPSC) has provided a promising solution to the replacement of damaged neurons, especially in spinal cord injuries. Despite its merits, differentiation of iPSCs is a highly variable process, prompting the need to reliably assess the degree of differentiat...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/163335 https://www.stemcell.org.sg/symposium22.html |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-163335 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1633352023-06-21T08:00:22Z Label-free assessment of differentiation efficiency in iPSC-derived spinal cord progenitor cells via Magnetic Resonance Relaxometry (MRR) Tan, Jerome Zu Yao Chen, Jiahui Roxby, Daniel Chooi, Wai Hon Nguyen, Tan Dai Ng, Shi-Yan Chew, Sing Yian Han, Jongyoon Interdisciplinary Graduate School (IGS) School of Chemistry, Chemical Engineering and Biotechnology 14th Stem Cell Society Singapore Symposium 2022 Campus for Research Excellence And Technological Enterprise (CREATE) Institute of Molecular and Cell Biology, A*STAR NTU Institute for Health Technologies Science::Medicine::Tissue engineering Engineering::Bioengineering Cell Therapy Critical Quality Attribute The advent of induced pluripotent stem cells (iPSC) has provided a promising solution to the replacement of damaged neurons, especially in spinal cord injuries. Despite its merits, differentiation of iPSCs is a highly variable process, prompting the need to reliably assess the degree of differentiation across batches, and validate their quality. iPSC phenotypes are detected through labelling cells with fluorescent markers or immunofluorescence staining based methods, which perturb or destroy cells, preventing their further use. In this study, human iPSCs derived from Cord Lining Endothelial cells were differentiated into Spinal-cord Progenitor Cells (SCPCs) through a 10-day process. Label-free measurement of these cells were performed at different timepoints using Magnetic Resonance Relaxometry (MRR), a rapid and label-free technique to obtain critical cellular iron (Fe3+) content. MRR only requires <180k cells for measurements that takes up to 2 minutes without additional preparation. SCPCs have significantly different T2 relaxation times compared to iPSCs. Furthermore, SCPCs harvested at the end of the differentiation containing higher levels of residual pluripotent markers have lower T2 relaxation times when compared to SCPCs with lower levels of these markers. Our technology provides an efficient, label-free method to assess critical quality attributes of iPSCs and SCPCs. National Research Foundation (NRF) 2022-12-14T06:47:55Z 2022-12-14T06:47:55Z 2022 Conference Paper Tan, J. Z. Y., Chen, J., Roxby, D., Chooi, W. H., Nguyen, T. D., Ng, S., Chew, S. Y. & Han, J. (2022). Label-free assessment of differentiation efficiency in iPSC-derived spinal cord progenitor cells via Magnetic Resonance Relaxometry (MRR). 14th Stem Cell Society Singapore Symposium 2022. https://hdl.handle.net/10356/163335 https://www.stemcell.org.sg/symposium22.html en © 2022 Stem Cell Society Singapore. All rights reserved. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Science::Medicine::Tissue engineering Engineering::Bioengineering Cell Therapy Critical Quality Attribute |
spellingShingle |
Science::Medicine::Tissue engineering Engineering::Bioengineering Cell Therapy Critical Quality Attribute Tan, Jerome Zu Yao Chen, Jiahui Roxby, Daniel Chooi, Wai Hon Nguyen, Tan Dai Ng, Shi-Yan Chew, Sing Yian Han, Jongyoon Label-free assessment of differentiation efficiency in iPSC-derived spinal cord progenitor cells via Magnetic Resonance Relaxometry (MRR) |
description |
The advent of induced pluripotent stem cells (iPSC) has provided a promising solution to the replacement of damaged neurons, especially in spinal cord injuries. Despite its merits, differentiation of iPSCs is a highly variable process, prompting the need to reliably assess the degree of differentiation across batches, and validate their quality. iPSC phenotypes are detected through labelling cells with fluorescent markers or immunofluorescence staining based methods, which perturb or destroy cells, preventing their further use. In this study, human iPSCs derived from Cord Lining Endothelial cells were differentiated into Spinal-cord Progenitor Cells (SCPCs) through a 10-day process. Label-free measurement of these cells were performed at different timepoints using Magnetic Resonance Relaxometry (MRR), a rapid and label-free technique to obtain critical cellular iron (Fe3+) content. MRR only requires <180k cells for measurements that takes up to 2 minutes without additional preparation. SCPCs have significantly different T2 relaxation times compared to iPSCs. Furthermore, SCPCs harvested at the end of the differentiation containing higher levels of residual pluripotent markers have lower T2 relaxation times when compared to SCPCs with lower levels of these markers. Our technology provides an efficient, label-free method to assess critical quality attributes of iPSCs and SCPCs. |
author2 |
Interdisciplinary Graduate School (IGS) |
author_facet |
Interdisciplinary Graduate School (IGS) Tan, Jerome Zu Yao Chen, Jiahui Roxby, Daniel Chooi, Wai Hon Nguyen, Tan Dai Ng, Shi-Yan Chew, Sing Yian Han, Jongyoon |
format |
Conference or Workshop Item |
author |
Tan, Jerome Zu Yao Chen, Jiahui Roxby, Daniel Chooi, Wai Hon Nguyen, Tan Dai Ng, Shi-Yan Chew, Sing Yian Han, Jongyoon |
author_sort |
Tan, Jerome Zu Yao |
title |
Label-free assessment of differentiation efficiency in iPSC-derived spinal cord progenitor cells via Magnetic Resonance Relaxometry (MRR) |
title_short |
Label-free assessment of differentiation efficiency in iPSC-derived spinal cord progenitor cells via Magnetic Resonance Relaxometry (MRR) |
title_full |
Label-free assessment of differentiation efficiency in iPSC-derived spinal cord progenitor cells via Magnetic Resonance Relaxometry (MRR) |
title_fullStr |
Label-free assessment of differentiation efficiency in iPSC-derived spinal cord progenitor cells via Magnetic Resonance Relaxometry (MRR) |
title_full_unstemmed |
Label-free assessment of differentiation efficiency in iPSC-derived spinal cord progenitor cells via Magnetic Resonance Relaxometry (MRR) |
title_sort |
label-free assessment of differentiation efficiency in ipsc-derived spinal cord progenitor cells via magnetic resonance relaxometry (mrr) |
publishDate |
2022 |
url |
https://hdl.handle.net/10356/163335 https://www.stemcell.org.sg/symposium22.html |
_version_ |
1772829082684227584 |