Morphology investigation on direct growth ultra-long CNTs by chemical vapour deposition method for high performance HER applications

Carbon nanotube (CNT) is prepared by chemical vapor deposition method and their electrochemical behaviors for instance oxygen evolution (OER) and hydrogen evolution (HER) reaction have been successfully studied. In recent times, Pt-free electrocatalysts have been greatly attractive in electrochemica...

Full description

Saved in:
Bibliographic Details
Main Authors: Thirumal, V., Yuvakkumar, R., Senthil Kumar, P., Rangasamy, G., Ravi, G., Isacfranklin, M., Velauthapillai, Dhayalan, Thambidurai, Muthuvelan, Nguyen, Hung D.
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/163667
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Carbon nanotube (CNT) is prepared by chemical vapor deposition method and their electrochemical behaviors for instance oxygen evolution (OER) and hydrogen evolution (HER) reaction have been successfully studied. In recent times, Pt-free electrocatalysts have been greatly attractive in electrochemical hydrogen evolution reactions for the replacement of fossil fuels and development of sustainable energy carriers. Chemical vapor deposition method was used as an efficient way to synthesize CNTs directly. The as prepared free-standing and multifunctional CNT electrodes are used for overall water splitting applications. In this work, we have designed CNT as electrode material as well as current collector using Ni-foil and Ni-foam substrate and their fundamental characterizations confirm the structural, morphological behaviors of CNTs. Moreover, the well-ordered growth of CNT was obtained in Ni-foam CNTs 1 and 2, whereas in the Ni foil CNTs 1 and 2 less growth of CNT and amorphous carbon sponge was exceeded, which was further confirmed by the SEM images. The achieved electrochemical HER results displayed that the Ni-foam-CNT-2 exhibited lower overpotential, smallest Tafel slope and lower resistance value of 110 mV, 240 mV/dec and 0.24 Ω respectively. Moreover, Ni-foam-CNT-2 revealed excellent stability with 86.6 % retention over 20 h. Hence, it is one of the cost-effective and reliable materials for electrochemical hydrogen evolution reaction.