Morphology investigation on direct growth ultra-long CNTs by chemical vapour deposition method for high performance HER applications
Carbon nanotube (CNT) is prepared by chemical vapor deposition method and their electrochemical behaviors for instance oxygen evolution (OER) and hydrogen evolution (HER) reaction have been successfully studied. In recent times, Pt-free electrocatalysts have been greatly attractive in electrochemica...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/163667 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-163667 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1636672022-12-13T07:43:57Z Morphology investigation on direct growth ultra-long CNTs by chemical vapour deposition method for high performance HER applications Thirumal, V. Yuvakkumar, R. Senthil Kumar, P. Rangasamy, G. Ravi, G. Isacfranklin, M. Velauthapillai, Dhayalan Thambidurai, Muthuvelan Nguyen, Hung D. School of Electrical and Electronic Engineering Engineering::Electrical and electronic engineering Hydrogen Evolution Reaction Water Splitting Carbon nanotube (CNT) is prepared by chemical vapor deposition method and their electrochemical behaviors for instance oxygen evolution (OER) and hydrogen evolution (HER) reaction have been successfully studied. In recent times, Pt-free electrocatalysts have been greatly attractive in electrochemical hydrogen evolution reactions for the replacement of fossil fuels and development of sustainable energy carriers. Chemical vapor deposition method was used as an efficient way to synthesize CNTs directly. The as prepared free-standing and multifunctional CNT electrodes are used for overall water splitting applications. In this work, we have designed CNT as electrode material as well as current collector using Ni-foil and Ni-foam substrate and their fundamental characterizations confirm the structural, morphological behaviors of CNTs. Moreover, the well-ordered growth of CNT was obtained in Ni-foam CNTs 1 and 2, whereas in the Ni foil CNTs 1 and 2 less growth of CNT and amorphous carbon sponge was exceeded, which was further confirmed by the SEM images. The achieved electrochemical HER results displayed that the Ni-foam-CNT-2 exhibited lower overpotential, smallest Tafel slope and lower resistance value of 110 mV, 240 mV/dec and 0.24 Ω respectively. Moreover, Ni-foam-CNT-2 revealed excellent stability with 86.6 % retention over 20 h. Hence, it is one of the cost-effective and reliable materials for electrochemical hydrogen evolution reaction. This work was supported by UGC-SAP, DST-FIST, DST-PURSE, MHRD-RUSA grants. 2022-12-13T07:43:57Z 2022-12-13T07:43:57Z 2022 Journal Article Thirumal, V., Yuvakkumar, R., Senthil Kumar, P., Rangasamy, G., Ravi, G., Isacfranklin, M., Velauthapillai, D., Thambidurai, M. & Nguyen, H. D. (2022). Morphology investigation on direct growth ultra-long CNTs by chemical vapour deposition method for high performance HER applications. Fuel, 330, 125532-. https://dx.doi.org/10.1016/j.fuel.2022.125532 0016-2361 https://hdl.handle.net/10356/163667 10.1016/j.fuel.2022.125532 2-s2.0-85135814537 330 125532 en Fuel © 2022 Elsevier Ltd. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Electrical and electronic engineering Hydrogen Evolution Reaction Water Splitting |
spellingShingle |
Engineering::Electrical and electronic engineering Hydrogen Evolution Reaction Water Splitting Thirumal, V. Yuvakkumar, R. Senthil Kumar, P. Rangasamy, G. Ravi, G. Isacfranklin, M. Velauthapillai, Dhayalan Thambidurai, Muthuvelan Nguyen, Hung D. Morphology investigation on direct growth ultra-long CNTs by chemical vapour deposition method for high performance HER applications |
description |
Carbon nanotube (CNT) is prepared by chemical vapor deposition method and their electrochemical behaviors for instance oxygen evolution (OER) and hydrogen evolution (HER) reaction have been successfully studied. In recent times, Pt-free electrocatalysts have been greatly attractive in electrochemical hydrogen evolution reactions for the replacement of fossil fuels and development of sustainable energy carriers. Chemical vapor deposition method was used as an efficient way to synthesize CNTs directly. The as prepared free-standing and multifunctional CNT electrodes are used for overall water splitting applications. In this work, we have designed CNT as electrode material as well as current collector using Ni-foil and Ni-foam substrate and their fundamental characterizations confirm the structural, morphological behaviors of CNTs. Moreover, the well-ordered growth of CNT was obtained in Ni-foam CNTs 1 and 2, whereas in the Ni foil CNTs 1 and 2 less growth of CNT and amorphous carbon sponge was exceeded, which was further confirmed by the SEM images. The achieved electrochemical HER results displayed that the Ni-foam-CNT-2 exhibited lower overpotential, smallest Tafel slope and lower resistance value of 110 mV, 240 mV/dec and 0.24 Ω respectively. Moreover, Ni-foam-CNT-2 revealed excellent stability with 86.6 % retention over 20 h. Hence, it is one of the cost-effective and reliable materials for electrochemical hydrogen evolution reaction. |
author2 |
School of Electrical and Electronic Engineering |
author_facet |
School of Electrical and Electronic Engineering Thirumal, V. Yuvakkumar, R. Senthil Kumar, P. Rangasamy, G. Ravi, G. Isacfranklin, M. Velauthapillai, Dhayalan Thambidurai, Muthuvelan Nguyen, Hung D. |
format |
Article |
author |
Thirumal, V. Yuvakkumar, R. Senthil Kumar, P. Rangasamy, G. Ravi, G. Isacfranklin, M. Velauthapillai, Dhayalan Thambidurai, Muthuvelan Nguyen, Hung D. |
author_sort |
Thirumal, V. |
title |
Morphology investigation on direct growth ultra-long CNTs by chemical vapour deposition method for high performance HER applications |
title_short |
Morphology investigation on direct growth ultra-long CNTs by chemical vapour deposition method for high performance HER applications |
title_full |
Morphology investigation on direct growth ultra-long CNTs by chemical vapour deposition method for high performance HER applications |
title_fullStr |
Morphology investigation on direct growth ultra-long CNTs by chemical vapour deposition method for high performance HER applications |
title_full_unstemmed |
Morphology investigation on direct growth ultra-long CNTs by chemical vapour deposition method for high performance HER applications |
title_sort |
morphology investigation on direct growth ultra-long cnts by chemical vapour deposition method for high performance her applications |
publishDate |
2022 |
url |
https://hdl.handle.net/10356/163667 |
_version_ |
1753801178006683648 |