Entropy-driven thermo-gelling vitrimer

Thermo-gelling polymers have been envisioned as promising smart biomaterials but limited by their weak mechanical and thermodynamic stabilities. Here, we propose a new thermo-gelling vitrimer, which remains at a liquid state because of the addition of protector molecules preventing the crosslinking,...

全面介紹

Saved in:
書目詳細資料
Main Authors: Xia, Xiuyang, Rao, Peilin, Yang, Juan, Ciamarra, Massimo Pica, Ni, Ran
其他作者: School of Chemical and Biomedical Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/163721
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Thermo-gelling polymers have been envisioned as promising smart biomaterials but limited by their weak mechanical and thermodynamic stabilities. Here, we propose a new thermo-gelling vitrimer, which remains at a liquid state because of the addition of protector molecules preventing the crosslinking, and with increasing temperature, an entropy-driven crosslinking occurs to induce the sol-gel transition. Moreover, we find that the activation barrier in the metathesis reaction of vitrimers plays an important role, and experimentally, one can use catalysts to tune the activation barrier to drive the vitrimer to form an equilibrium gel at high temperature, which is not subject to any thermodynamic instability. We formulate a mean-field theory to describe the entropy-driven crosslinking of the vitrimer, which agrees quantitatively with computer simulations and paves the way for the design and fabrication of novel vitrimers for biomedical applications.