Rank weight hierarchy of some classes of polynomial codes
We study the rank weight hierarchy, thus in particular the minimum rank distance, of polynomial codes over the finite field $\FF_{q^m}$, $q$ a prime power, $m \geq 2$. We assume that polynomials involved are squarefree. We establish the rank weight hierarchy of $[n,n-1]$ constacyclic codes. We chara...
Saved in:
Main Authors: | Ducoat, Jérôme, Oggier, Frédérique |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/163959 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Rank weight hierarchy of some classes of cyclic codes
由: Ducoat, Jérôme, et al.
出版: (2015) -
On the generalised rank weights of quasi-cyclic codes
由: Lim, Enhui, et al.
出版: (2022) -
Lattice Encoding of Cyclic Codes from Skew-polynomial Rings
由: Ducoat, Jérôme, et al.
出版: (2015) -
An analysis of small dimensional fading wiretap lattice codes
由: Ducoat, Jérôme, et al.
出版: (2014) -
Griesmer bound and constructions of linear codes in b-symbol metric
由: Luo, Gaojun, et al.
出版: (2024)