Aspect-guided syntax graph learning for explainable recommendation
Explainable recommendation systems provide explanations for recommendation results to improve their transparency and persuasiveness. The existing explainable recommendation methods generate textual explanations without explicitly considering the user's preferences on different aspects of the it...
Saved in:
Main Authors: | Hu, Yidan, Liu, Yong, Miao, Chunyan, Lin, Gongqi, Miao, Yuan |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/164142 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Explainable recommendation with comparative constraints on product aspects
由: LE, Trung-Hoang, et al.
出版: (2021) -
Mining product textual data for recommendation explanations
由: LE TRUNG HOANG,
出版: (2022) -
Reinforced Negative Sampling over Knowledge Graph for Recommendation
由: Xiang Wang, et al.
出版: (2020) -
Memory bank augmented long-tail sequential recommendation
由: Hu, Yidan, et al.
出版: (2023) -
Building more explainable artificial intelligence with argumentation
由: Zeng, Zhiwei, et al.
出版: (2020)