Evaluations of learning algorithms for object detection
Recently, layer-wise learning has been well developed into an alternative training schema of neural networks, aiming to bypass drawbacks brought by traditional backpropagation (BP) learning. A newly error-based forward layer-wise learning method, which is so-called forward progressive learning (FPL)...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis-Master by Coursework |
Language: | English |
Published: |
Nanyang Technological University
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/164250 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-164250 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1642502023-07-04T17:45:50Z Evaluations of learning algorithms for object detection Yang, Zishuo Cheah Chien Chern School of Electrical and Electronic Engineering ECCCheah@ntu.edu.sg Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision Recently, layer-wise learning has been well developed into an alternative training schema of neural networks, aiming to bypass drawbacks brought by traditional backpropagation (BP) learning. A newly error-based forward layer-wise learning method, which is so-called forward progressive learning (FPL), has been used to construct the analytical framework of deep convolutional neural networks (CNNs). The FPL method is capable of more robust learning convergence, better performance and more explainable ability than the well-known stochastic gradient descent (SGD) method. Previous researches related to the FPL method only restrict to the classification task, but the transfer learning abilities of these pre-trained models also need to be investigated to fit into other tasks. In this dissertation project, we proposed a simple object detection architecture, image pyramids and sliding windows (IPSW), to convert pre-trained models into object detectors. Through massive comparisons, it turns out that models pre-trained by the FPL method, especially those subnets in the analytical structure of CNNs, fine-tuned with our proposed IPSW achieve better detection metrics but have less trainable parameters in the pre-training stage than those counterparts with the SGD method. Moreover, we also compared our proposed IPSW with other popular types of object detection architecture, such as R-CNN and Faster R-CNN. Numerical observations indicate that our proposed IPSW is a more suitable option for the evaluation of transfer learning abilities of pre-trained models with the FPL method in the field of object detection. Master of Science (Computer Control and Automation) 2023-01-12T06:05:17Z 2023-01-12T06:05:17Z 2022 Thesis-Master by Coursework Yang, Z. (2022). Evaluations of learning algorithms for object detection. Master's thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/164250 https://hdl.handle.net/10356/164250 en application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision |
spellingShingle |
Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision Yang, Zishuo Evaluations of learning algorithms for object detection |
description |
Recently, layer-wise learning has been well developed into an alternative training schema of neural networks, aiming to bypass drawbacks brought by traditional backpropagation (BP) learning. A newly error-based forward layer-wise learning method, which is so-called forward progressive learning (FPL), has been used to construct the analytical framework of deep convolutional neural networks (CNNs). The FPL method is capable of more robust learning convergence, better performance and more explainable ability than the well-known stochastic gradient descent (SGD) method. Previous researches related to the FPL method only restrict to the classification task, but the transfer learning abilities of these pre-trained models also need to be investigated to fit into other tasks. In this dissertation project, we proposed a simple object detection architecture, image pyramids and sliding windows (IPSW), to convert pre-trained models into object detectors. Through massive comparisons, it turns out that models pre-trained by the FPL method, especially those subnets in the analytical structure of CNNs, fine-tuned with our proposed IPSW achieve better detection metrics but have less trainable parameters in the pre-training stage than those counterparts with the SGD method. Moreover, we also compared our proposed IPSW with other popular types of object detection architecture, such as R-CNN and Faster R-CNN. Numerical observations indicate that our proposed IPSW is a more suitable option for the evaluation of transfer learning abilities of pre-trained models with the FPL method in the field of object detection. |
author2 |
Cheah Chien Chern |
author_facet |
Cheah Chien Chern Yang, Zishuo |
format |
Thesis-Master by Coursework |
author |
Yang, Zishuo |
author_sort |
Yang, Zishuo |
title |
Evaluations of learning algorithms for object detection |
title_short |
Evaluations of learning algorithms for object detection |
title_full |
Evaluations of learning algorithms for object detection |
title_fullStr |
Evaluations of learning algorithms for object detection |
title_full_unstemmed |
Evaluations of learning algorithms for object detection |
title_sort |
evaluations of learning algorithms for object detection |
publisher |
Nanyang Technological University |
publishDate |
2023 |
url |
https://hdl.handle.net/10356/164250 |
_version_ |
1772828494165704704 |