Towards robust visual recognition: learning from imperfect data
Though Deep Convolutional Neural Networks (DCNN) have shown success in many tasks in the field of computer vision, the huge effort made in constructing large-scale annotated datasets is indispensable. Even the prevailing models can fail when the dataset does not cover enough samples. For example, fo...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Thesis-Doctor of Philosophy |
اللغة: | English |
منشور في: |
Nanyang Technological University
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/164415 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|