ADAST: Attentive cross-domain EEG-based sleep staging framework with iterative self-training
Sleep staging is of great importance in the diagnosis and treatment of sleep disorders. Recently, numerous data-driven deep learning models have been proposed for automatic sleep staging. They mainly train the model on a large public labeled sleep dataset and test it on a smaller one with subjects o...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/164490 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-164490 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1644902023-01-30T02:24:59Z ADAST: Attentive cross-domain EEG-based sleep staging framework with iterative self-training Eldele, Emadeldeen Ragab, Mohamed Chen, Zhenghua Wu, Min Kwoh, Chee Keong Li, Xiaoli Guan, Cuntai School of Computer Science and Engineering Institute for Infocomm Research (IR), Centre for Frontier Research (CFAR), A*STAR Engineering::Computer science and engineering Unsupervised Domain Adaptation Adversarial Training Sleep staging is of great importance in the diagnosis and treatment of sleep disorders. Recently, numerous data-driven deep learning models have been proposed for automatic sleep staging. They mainly train the model on a large public labeled sleep dataset and test it on a smaller one with subjects of interest. However, they usually assume that the train and test data are drawn from the same distribution, which may not hold in real-world scenarios. Unsupervised domain adaption (UDA) has been recently developed to handle this domain shift problem. However, previous UDA methods applied for sleep staging have two main limitations. First, they rely on a totally shared model for the domain alignment, which may lose the domain-specific information during feature extraction. Second, they only align the source and target distributions globally without considering the class information in the target domain, which hinders the classification performance of the model while testing. In this work, we propose a novel adversarial learning framework called ADAST to tackle the domain shift problem in the unlabeled target domain. First, we develop an unshared attention mechanism to preserve the domain-specific features in both domains. Second, we design an iterative self-training strategy to improve the classification performance on the target domain via target domain pseudo labels. We also propose dual distinct classifiers to increase the robustness and quality of the pseudo labels. The experimental results on six cross-domain scenarios validate the efficacy of our proposed framework and its advantage over state-of-the-art UDA methods. Agency for Science, Technology and Research (A*STAR) The work of Emadeldeen Eldele and Mohamed Ragab was supported by A*STAR SINGA Scholarship. 2023-01-30T02:24:59Z 2023-01-30T02:24:59Z 2022 Journal Article Eldele, E., Ragab, M., Chen, Z., Wu, M., Kwoh, C. K., Li, X. & Guan, C. (2022). ADAST: Attentive cross-domain EEG-based sleep staging framework with iterative self-training. IEEE Transactions On Emerging Topics in Computational Intelligence, 1-12. https://dx.doi.org/10.1109/TETCI.2022.3189695 2471-285X https://hdl.handle.net/10356/164490 10.1109/TETCI.2022.3189695 2-s2.0-85136146077 1 12 en IEEE Transactions on Emerging Topics in Computational Intelligence © 2022 IEEE. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Computer science and engineering Unsupervised Domain Adaptation Adversarial Training |
spellingShingle |
Engineering::Computer science and engineering Unsupervised Domain Adaptation Adversarial Training Eldele, Emadeldeen Ragab, Mohamed Chen, Zhenghua Wu, Min Kwoh, Chee Keong Li, Xiaoli Guan, Cuntai ADAST: Attentive cross-domain EEG-based sleep staging framework with iterative self-training |
description |
Sleep staging is of great importance in the diagnosis and treatment of sleep disorders. Recently, numerous data-driven deep learning models have been proposed for automatic sleep staging. They mainly train the model on a large public labeled sleep dataset and test it on a smaller one with subjects of interest. However, they usually assume that the train and test data are drawn from the same distribution, which may not hold in real-world scenarios. Unsupervised domain adaption (UDA) has been recently developed to handle this domain shift problem. However, previous UDA methods applied for sleep staging have two main limitations. First, they rely on a totally shared model for the domain alignment, which may lose the domain-specific information during feature extraction. Second, they only align the source and target distributions globally without considering the class information in the target domain, which hinders the classification performance of the model while testing. In this work, we propose a novel adversarial learning framework called ADAST to tackle the domain shift problem in the unlabeled target domain. First, we develop an unshared attention mechanism to preserve the domain-specific features in both domains. Second, we design an iterative self-training strategy to improve the classification performance on the target domain via target domain pseudo labels. We also propose dual distinct classifiers to increase the robustness and quality of the pseudo labels. The experimental results on six cross-domain scenarios validate the efficacy of our proposed framework and its advantage over state-of-the-art UDA methods. |
author2 |
School of Computer Science and Engineering |
author_facet |
School of Computer Science and Engineering Eldele, Emadeldeen Ragab, Mohamed Chen, Zhenghua Wu, Min Kwoh, Chee Keong Li, Xiaoli Guan, Cuntai |
format |
Article |
author |
Eldele, Emadeldeen Ragab, Mohamed Chen, Zhenghua Wu, Min Kwoh, Chee Keong Li, Xiaoli Guan, Cuntai |
author_sort |
Eldele, Emadeldeen |
title |
ADAST: Attentive cross-domain EEG-based sleep staging framework with iterative self-training |
title_short |
ADAST: Attentive cross-domain EEG-based sleep staging framework with iterative self-training |
title_full |
ADAST: Attentive cross-domain EEG-based sleep staging framework with iterative self-training |
title_fullStr |
ADAST: Attentive cross-domain EEG-based sleep staging framework with iterative self-training |
title_full_unstemmed |
ADAST: Attentive cross-domain EEG-based sleep staging framework with iterative self-training |
title_sort |
adast: attentive cross-domain eeg-based sleep staging framework with iterative self-training |
publishDate |
2023 |
url |
https://hdl.handle.net/10356/164490 |
_version_ |
1757048194912485376 |