Self-supervised autoregressive domain adaptation for time series data
Unsupervised domain adaptation (UDA) has successfully addressed the domain shift problem for visual applications. Yet, these approaches may have limited performance for time series data due to the following reasons. First, they mainly rely on the large-scale dataset (i.e., ImageNet) for source pretr...
Saved in:
Main Authors: | Ragab, Mohamed, Eldele, Emadeldeen, Chen, Zhenghua, Wu, Min, Kwoh, Chee Keong, Li, Xiaoli |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/164530 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
ADAST: Attentive cross-domain EEG-based sleep staging framework with iterative self-training
由: Eldele, Emadeldeen, et al.
出版: (2023) -
Conditional contrastive domain generalization for fault diagnosis
由: Ragab, Mohamed, et al.
出版: (2022) -
Contrastive adversarial domain adaptation for machine remaining useful life prediction
由: Mohamed Ragab, et al.
出版: (2022) -
Time-series representation learning via temporal and contextual contrasting
由: Eldele, Emadeldeen, et al.
出版: (2022) -
Adaptive Estimation of Autoregressive Models with Time-Varying Variances
由: XU, Ke-Li, et al.
出版: (2008)