2D and 3D visual understanding with limited supervision
Existing fully supervised deep learning methods usually require a large number of training samples with abundant annotations for the model training, which is extremely expensive and labor-consuming. Therefore, in order to alleviate huge labeling costs, it is highly desirable to develop weakly superv...
Saved in:
主要作者: | Wu, Zhonghua |
---|---|
其他作者: | Lin Guosheng |
格式: | Thesis-Doctor of Philosophy |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/164693 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Learning visual representations without human supervision
由: Xie, Jiahao
出版: (2023) -
Weakly-supervised learning for video understanding
由: Deng, Dingfan
出版: (2023) -
Semi-supervised learning for visual relation annotation
由: Tajrobehkar, Mitra
出版: (2022) -
2D to 3D conversion
由: Li, Ning.
出版: (2011) -
Skeleton-based human activity understanding
由: Liu, Jun
出版: (2019)