Bayesian updating of model parameters using adaptive Gaussian process regression and particle filter
Bayesian model updating provides a powerful framework for updating and uncertainty quantification of models by making use of observations, following probability rules in the treatment of uncertainty. Particle filter (PF) and Bayesian Updating with Structural Reliability method (BUS) have been develo...
Saved in:
Main Authors: | Yoshida, Ikumasa, Nakamura, Tomoka, Au, Siu-Kui |
---|---|
其他作者: | School of Civil and Environmental Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/164713 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Meta-analytic Gaussian Network Aggregation
由: Epskamp, Sacha, et al.
出版: (2022) -
DATA-DRIVEN SURROGATE SELECTION AND MODELING TO AID OPTIMIZATION OF COMPLEX SYSTEMS
由: MAAZ AHMAD
出版: (2023) -
Predicting shear strength of corroded RC columns: a probabilistic model with enhanced Gaussian Process Regression
由: Yu, Bo, et al.
出版: (2025) -
Bayesian support vector regression using a unified loss function
由: Chu, W., et al.
出版: (2014) -
Cope with diverse data structures in multi-fidelity modeling : a Gaussian process method
由: Liu, Haitao, et al.
出版: (2020)