Spintronic terahertz emitters in silicon-based heterostructures

Integration of active elements into silicon wafers is the first step towards their usage in modern electronic devices based on nanometric structures. Spintronic terahertz emitters, typically composed of nanometer-thin magnetic multilayer, have the outstanding capability of producing high-quality, br...

全面介紹

Saved in:
書目詳細資料
Main Authors: Liu, Jiayun, Lee, Kyusup, Yang, Yingshu, Li, Ziqi, Sharma, Raghav, Xi, Lifei, Salim, Teddy, Boothroyd, Chris, Lam, Yeng Ming, Yang, Hyunsoo, Battiato, Marco, Chia, Elbert E. M.
其他作者: School of Materials Science and Engineering
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/165549
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Integration of active elements into silicon wafers is the first step towards their usage in modern electronic devices based on nanometric structures. Spintronic terahertz emitters, typically composed of nanometer-thin magnetic multilayer, have the outstanding capability of producing high-quality, broadband terahertz pulses using extremely simple heterostructures. A question remains on whether an efficient and cheap integration with other silicon-based technologies can be achieved. We show here that simply having a ferromagnetic layer on silicon produces remarkably efficient spintronic terahertz emission despite the low spin-orbit coupling of the individual components. We achieve this by leveraging on the natural formation of silicides at the interface of a transition metal and silicon. The cobalt silicide layer has good spin-to-charge conversion efficiency that reaches around 1/6 as that of the prototypical spintronics THz-emitter heterostructure cobalt/platinum.