AST-GIN: attribute-augmented spatiotemporal graph informer network for electric vehicle charging station availability forecasting

Electric Vehicle (EV) charging demand and charging station availability forecasting is one of the challenges in the intelligent transportation system. With accurate EV station availability prediction, suitable charging behaviors can be scheduled in advance to relieve range anxiety. Many existing dee...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Luo, Ruikang, Song, Yaofeng, Huang, Liping, Zhang, Yicheng, Su, Rong
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: مقال
اللغة:English
منشور في: 2023
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/165597
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Electric Vehicle (EV) charging demand and charging station availability forecasting is one of the challenges in the intelligent transportation system. With accurate EV station availability prediction, suitable charging behaviors can be scheduled in advance to relieve range anxiety. Many existing deep learning methods have been proposed to address this issue; however, due to the complex road network structure and complex external factors, such as points of interest (POIs) and weather effects, many commonly used algorithms can only extract the historical usage information and do not consider the comprehensive influence of external factors. To enhance the prediction accuracy and interpretability, the Attribute-Augmented Spatiotemporal Graph Informer (AST-GIN) structure is proposed in this study by combining the Graph Convolutional Network (GCN) layer and the Informer layer to extract both the external and internal spatiotemporal dependence of relevant transportation data. The external factors are modeled as dynamic attributes by the attributeaugmented encoder for training. The AST-GIN model was tested on the data collected in Dundee City, and the experimental results showed the effectiveness of our model considering external factors' influence on various horizon settings compared with other baselines.