Missing traffic data imputation with a linear generative model based on probabilistic principal component analysis
Even with the ubiquitous sensing data in intelligent transportation systems, such as the mobile sensing of vehicle trajectories, traffic estimation is still faced with the data missing problem due to the detector faults or limited number of probe vehicles as mobile sensors. Such data missing issue p...
محفوظ في:
المؤلفون الرئيسيون: | Huang, Liping, Li, Zhenghuan, Luo, Ruikang, Su, Rong |
---|---|
مؤلفون آخرون: | School of Electrical and Electronic Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/165598 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
Data assimilation with missing data in nonstationary environments for probabilistic machine learning models
بواسطة: Wei, Yuying, وآخرون
منشور في: (2024) -
Development of Data Imputation Methods for the Multiple Linear Regression
بواسطة: Thidarat Thongsri
منشور في: (2023) -
ANALYSIS OF LARGE SCALE URBAN TRANSPORTATION NETWORK USING URBAN TRAFFIC DATA
بواسطة: LIU JIELUN
منشور في: (2022) -
ProJect: a powerful mixed-model missing value imputation method
بواسطة: Kong, Weijia, وآخرون
منشور في: (2023) -
EVALUATING FIML AND MULTIPLE IMPUTATION IN JOINT ORDINAL-CONTINUOUS MEASUREMENT MODELS WITH MISSING DATA
بواسطة: AARON LIM JIN MING
منشور في: (2020)