Comprehensive armature reaction modeling and flux weakening optimization of a surface permanent magnet vernier motor

Surface permanent magnet vernier motors (SPMVMs) possess the potential for direct-drive applications due to the feature of high torque density. This paper presents a deep investigation into the armature reaction modeling and a semi-analytical optimization framework considering the constant power spe...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhu, Jingwei, Fan, Ying, Chen, Hao, Chen, Jiahao, Zuo, Yuefei, Lee, Christopher Ho Tin
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/165629
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Surface permanent magnet vernier motors (SPMVMs) possess the potential for direct-drive applications due to the feature of high torque density. This paper presents a deep investigation into the armature reaction modeling and a semi-analytical optimization framework considering the constant power speed range (CPSR) in the flux weakening region for the SPMVM. The new armature reaction model can identify the armature air gap flux density of each harmonic component and armature flux linkage accurately, by conducting harmonics analysis, slot leakage flux computation and slotting effect evaluation, permitting to calculate the inductance. Then, the results from the armature reaction model and those obtained from finite element analysis (FEA) at the rated operating point together are applied to a comprehensive semi-analytical motor optimization framework developed for SPMVMs. The optimization framework is able to reflect the motor performance metrics over the entire speed range, with torque density, power factor and CPSR as objectives. Finally, a prototype designed according to the trade-offs of the optimization objectives is fabricated to confirm the validity of the armature reaction model and optimization framework.