A polymeric extracellular matrix nanoremodeler for activatable cancer photo-immunotherapy
Cancer immunotherapy has shown tremendous potential to train the intrinsic immune system against malignancy in the clinic. However, the extracellular matrix (ECM) in tumor microenvironment is a formidable barrier that not only restricts the penetration of therapeutic drugs but also prevents the infi...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/166275 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Cancer immunotherapy has shown tremendous potential to train the intrinsic immune system against malignancy in the clinic. However, the extracellular matrix (ECM) in tumor microenvironment is a formidable barrier that not only restricts the penetration of therapeutic drugs but also prevents the infiltration of antitumor immune cells. We herein report a semiconducting polymer-based ECM nanoremodeler (SPNcb) to combine photodynamic antitumor activity with cancer-specific inhibition of collagen-crosslinking enzymes (lysyl oxidase (LOX) family) for activatable cancer photo-immunotherapy. SPNcb is self-assembled from an amphiphilic semiconducting polymer conjugated with a LOX inhibitor (β-aminopropionitrile, BAPN) via a cancer biomarker (cathepsin B, CatB)-cleavable segment. BAPN can be exclusively activated to inhibit LOX activity in the presence of the tumor-overexpressed CatB, thus blocking collagen crosslinking and decreasing ECM stiffness. Such an ECM nanoremodeler synergizes immunogenic phototherapy and checkpoint blockade immunotherapy to improve the tumor infiltration of cytotoxic T cells, inhibiting tumor growth and metastasis. |
---|