Salt-triggered adaptive dissociation coating with dual effect of antibacteria and anti-multiple encrustations in urological devices

Bacterial infections and multiple encrustations are life-threatening complications in patients implanted with urological devices. Limited by time-consuming procedures and substrate dependence, it is difficult to simultaneously prevent the aforementioned complications. Herein, is reported the design...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu, Huan, Shi, Hengchong, Zhu, Ming, Zhang, Xu, Wang, Lei, Tian, Gongwei, Song, Lingjie, Luan, Shifang, Qi, Dianpeng, Chen, Xiaodong
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/166405
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Bacterial infections and multiple encrustations are life-threatening complications in patients implanted with urological devices. Limited by time-consuming procedures and substrate dependence, it is difficult to simultaneously prevent the aforementioned complications. Herein, is reported the design of a salt-triggered chondroitin sulfate complex (CS/Si-N+ ) coating with adaptive dissociation, which realizes the dual functions of antibacterial and anti-multiple encrustations in urological devices with arbitrary shapes. The existence of covalent interactions between the complex and the interface ensures the formation of a robust coating, especially in harsh environments. Benefiting from the adaptive dissociation of the ion pairs in the CS/Si-N+ coating in urine electrolytes, the exposed ion groups and enhanced hydrophilicity are more conducive to the inhibition of bacterial infection and multiple encrustations simultaneously. The coating exhibits broad-spectrum bactericidal effects. As a proof of concept, in a simulated metabolic encrustation model, the coating exhibits significant advantages in resisting calcium oxalate encrustation, with a reduction in the calcium content by over 90%. In addition, this non-leachable all-in-one coating shows good biocompatibility in a pig in vivo model. Such a coating strategy is expected to be a practical approach for preventing urological medical device-related complications.