Exploring sequential VAE to handle time-series data
Variational Autoencoders (VAEs) have gained significant popularity in recent years as a powerful generative model. They emerged in 2013 when it was introduced as a means to learn latent representations of data in an unsupervised manner while providing a probabilistic framework for generation. One of...
Saved in:
主要作者: | |
---|---|
其他作者: | |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/166501 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|