Exploring sequential VAE to handle time-series data
Variational Autoencoders (VAEs) have gained significant popularity in recent years as a powerful generative model. They emerged in 2013 when it was introduced as a means to learn latent representations of data in an unsupervised manner while providing a probabilistic framework for generation. One of...
Saved in:
主要作者: | Tan, Colin G-Hao |
---|---|
其他作者: | Arvind Easwaran |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/166501 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
VAE hyperparameter optimization in optical flow based OOD detection
由: Goh, Ting Qi
出版: (2022) -
Efficient out-of-distribution detection using latent space of β-VAE for cyber-physical systems
由: Ramakrishna, Shreyas, et al.
出版: (2022) -
Clustering and prediction of time series data
由: Tan, Benjamin Bo Hong
出版: (2014) -
Data-driven construction of visual query interface for time series data
由: Yip, Justin Jia En
出版: (2023) -
Deep learning based anomaly detection in time-series data
由: Zeng, Jinpo
出版: (2020)