Self-cleaning coating for soft grippers
Self-cleaning coatings that can repel water and other contaminants are an important area of research due to their potential applications in various fields such as biomedicine, energy and electronics. Silanes have become a promising material for hydrophobic coatings due to their ability to form stron...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/166678 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-166678 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1666782023-06-01T02:20:49Z Self-cleaning coating for soft grippers Xia, Qi Lin Lee Pooi See School of Materials Science and Engineering CREATE PSLee@ntu.edu.sg Engineering::Materials::Functional materials Self-cleaning coatings that can repel water and other contaminants are an important area of research due to their potential applications in various fields such as biomedicine, energy and electronics. Silanes have become a promising material for hydrophobic coatings due to their ability to form strong covalent bonds with the surface of the substrate. Similarly, peptides have emerged as a promising material for self- cleaning coatings because of their ability to self-assemble into well-defined structures with unique surface properties. This work focuses on the study of two types of self-cleaning coatings, namely self-cleaning coatings composed of silanes, and the self-assembly of peptides formed for hydrophobic surfaces. For the study of silanes, 1H,1H,2H,2H-Perfluorooctyltrichlorosilane, 97%, (PFOTS)will be used in this project, and the process involves depositing PFOTS onto the surface of a soft substrate. The results show that the coatings exhibit excellent water repellency, with contact angles over 150 degrees and roll angles below10 degrees. For the study of peptides, both N-carbobenzyloxy-L-phenylalanine also named as Z-L-Phe and3,4- dihydroxyphenethylamine, also named as Dopamine will be tested in this project and the results show that the Z-L-Phe coatings exhibit water repellency with contact angles at 130 degrees and roll angles below30degrees whereas the Dopamine coating does not exhibit hydrophobic properties. The coating substrates tested in this project are PDMS, Ecoflex and Polyurethane acrylate. Potential applications for such self- cleaning peptide materials include coatings for medical devices, optical lenses, electronic components, and as antifouling coatings for soft surfaces of bionic soft-bodied robots. Bachelor of Engineering (Materials Engineering) 2023-05-08T05:09:15Z 2023-05-08T05:09:15Z 2023 Final Year Project (FYP) Xia, Q. L. (2023). Self-cleaning coating for soft grippers. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/166678 https://hdl.handle.net/10356/166678 en application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Materials::Functional materials |
spellingShingle |
Engineering::Materials::Functional materials Xia, Qi Lin Self-cleaning coating for soft grippers |
description |
Self-cleaning coatings that can repel water and other contaminants are an important area of research due to their potential applications in various fields such as biomedicine, energy and electronics. Silanes have become a promising material for hydrophobic coatings due to their ability to form strong covalent bonds with the surface of the substrate. Similarly, peptides have emerged as a promising material for self- cleaning coatings because of their ability to self-assemble into well-defined structures with unique surface properties. This work focuses on the study of two types of self-cleaning coatings, namely self-cleaning coatings composed of silanes, and the self-assembly of peptides formed for hydrophobic surfaces. For the study of silanes, 1H,1H,2H,2H-Perfluorooctyltrichlorosilane, 97%, (PFOTS)will be used in this project, and the process involves depositing PFOTS onto the surface of a soft substrate. The results show that the coatings exhibit excellent water repellency, with contact angles over 150 degrees and roll angles below10 degrees. For the study of peptides, both N-carbobenzyloxy-L-phenylalanine also named as Z-L-Phe and3,4- dihydroxyphenethylamine, also named as Dopamine will be tested in this project and the results show that the Z-L-Phe coatings exhibit water repellency with contact angles at 130 degrees and roll angles below30degrees whereas the Dopamine coating does not exhibit hydrophobic properties. The coating substrates tested in this project are PDMS, Ecoflex and Polyurethane acrylate. Potential applications for such self- cleaning peptide materials include coatings for medical devices, optical lenses, electronic components, and as antifouling coatings for soft surfaces of bionic soft-bodied robots. |
author2 |
Lee Pooi See |
author_facet |
Lee Pooi See Xia, Qi Lin |
format |
Final Year Project |
author |
Xia, Qi Lin |
author_sort |
Xia, Qi Lin |
title |
Self-cleaning coating for soft grippers |
title_short |
Self-cleaning coating for soft grippers |
title_full |
Self-cleaning coating for soft grippers |
title_fullStr |
Self-cleaning coating for soft grippers |
title_full_unstemmed |
Self-cleaning coating for soft grippers |
title_sort |
self-cleaning coating for soft grippers |
publisher |
Nanyang Technological University |
publishDate |
2023 |
url |
https://hdl.handle.net/10356/166678 |
_version_ |
1772825529215352832 |