Federated learning for graph neural networks
This dissertation investigates the combination of graph neural networks (GNNs) and federated learning (FL) for addressing practical problems while preserving data privacy and reducing computational complexity. Specifically, we reproduce the Graph Clustered Federated Learning (GCFL) framework and...
Saved in:
主要作者: | Yan, Yige |
---|---|
其他作者: | Tay Wee Peng |
格式: | Thesis-Master by Coursework |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/167083 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Federated graph neural network
由: Koh, Tat You @ Arthur
出版: (2021) -
Implementation of high-performance graph neural network distributed learning framework
由: Lee, Cheng Han
出版: (2023) -
Federated learning study
由: Aratrika, Pal
出版: (2023) -
Federated learning playground
由: Puvaneswaran Arumugam
出版: (2023) -
Benchmarking novel graph neural networks
由: Bhagwat, Abhishek
出版: (2021)