Towards better fine-grained visual classification: an attention-based, hierarchical approach
Unlike general object classification, which uses convolutional neural networks (CNNs), fine-grained visual classification (FGVC) is a challenging problem that involves categorizing objects belong to different subcategories with subtle fine-grained details. Furthermore, most fine-grained categories i...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Final Year Project |
اللغة: | English |
منشور في: |
Nanyang Technological University
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/167399 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | Unlike general object classification, which uses convolutional neural networks (CNNs), fine-grained visual classification (FGVC) is a challenging problem that involves categorizing objects belong to different subcategories with subtle fine-grained details. Furthermore, most fine-grained categories inherently exhibit a hierarchical structure, as exemplified by the hierarchical classification of birds into orders, families, genera, and species. This type of hierarchical structure can capture intricate relationships among categories at different levels, thereby assisting in reducing ambiguity in predictions. Existing attention-based approaches focus on localize discriminative parts to learn fine-grained details of one certain level belongs to a category, ignoring utilization of hierarchical information in the category. In this paper, we explored different levels in the hierarchy of predicting categories and proposed a novel model by incorporating the hierarchical structure into a deep neural network. The proposed model consists of two parts: 1) a visual attention sampling module to emphasize the most discriminative parts of the image, 2) a hierarchical classifier with one base net and four branch nets. |
---|