Towards better fine-grained visual classification: an attention-based, hierarchical approach
Unlike general object classification, which uses convolutional neural networks (CNNs), fine-grained visual classification (FGVC) is a challenging problem that involves categorizing objects belong to different subcategories with subtle fine-grained details. Furthermore, most fine-grained categories i...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/167399 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-167399 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1673992023-07-07T17:44:18Z Towards better fine-grained visual classification: an attention-based, hierarchical approach Gao, Manrong Jiang Xudong School of Electrical and Electronic Engineering EXDJiang@ntu.edu.sg Engineering::Electrical and electronic engineering Unlike general object classification, which uses convolutional neural networks (CNNs), fine-grained visual classification (FGVC) is a challenging problem that involves categorizing objects belong to different subcategories with subtle fine-grained details. Furthermore, most fine-grained categories inherently exhibit a hierarchical structure, as exemplified by the hierarchical classification of birds into orders, families, genera, and species. This type of hierarchical structure can capture intricate relationships among categories at different levels, thereby assisting in reducing ambiguity in predictions. Existing attention-based approaches focus on localize discriminative parts to learn fine-grained details of one certain level belongs to a category, ignoring utilization of hierarchical information in the category. In this paper, we explored different levels in the hierarchy of predicting categories and proposed a novel model by incorporating the hierarchical structure into a deep neural network. The proposed model consists of two parts: 1) a visual attention sampling module to emphasize the most discriminative parts of the image, 2) a hierarchical classifier with one base net and four branch nets. Bachelor of Engineering (Electrical and Electronic Engineering) 2023-05-26T08:07:40Z 2023-05-26T08:07:40Z 2023 Final Year Project (FYP) Gao, M. (2023). Towards better fine-grained visual classification: an attention-based, hierarchical approach. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/167399 https://hdl.handle.net/10356/167399 en A3109-221 application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Electrical and electronic engineering |
spellingShingle |
Engineering::Electrical and electronic engineering Gao, Manrong Towards better fine-grained visual classification: an attention-based, hierarchical approach |
description |
Unlike general object classification, which uses convolutional neural networks (CNNs), fine-grained visual classification (FGVC) is a challenging problem that involves categorizing objects belong to different subcategories with subtle fine-grained details. Furthermore, most fine-grained categories inherently exhibit a hierarchical structure, as exemplified by the hierarchical classification of birds into orders, families, genera, and species. This type of hierarchical structure can capture intricate relationships among categories at different levels, thereby assisting in reducing ambiguity in predictions. Existing attention-based approaches focus on localize discriminative parts to learn fine-grained details of one certain level belongs to a category, ignoring utilization of hierarchical information in the category. In this paper, we explored different levels in the hierarchy of predicting categories and proposed a novel model by incorporating the hierarchical structure into a deep neural network. The proposed model consists of two parts: 1) a visual attention sampling module to emphasize the most discriminative parts of the image, 2) a hierarchical classifier with one base net and four branch nets. |
author2 |
Jiang Xudong |
author_facet |
Jiang Xudong Gao, Manrong |
format |
Final Year Project |
author |
Gao, Manrong |
author_sort |
Gao, Manrong |
title |
Towards better fine-grained visual classification: an attention-based, hierarchical approach |
title_short |
Towards better fine-grained visual classification: an attention-based, hierarchical approach |
title_full |
Towards better fine-grained visual classification: an attention-based, hierarchical approach |
title_fullStr |
Towards better fine-grained visual classification: an attention-based, hierarchical approach |
title_full_unstemmed |
Towards better fine-grained visual classification: an attention-based, hierarchical approach |
title_sort |
towards better fine-grained visual classification: an attention-based, hierarchical approach |
publisher |
Nanyang Technological University |
publishDate |
2023 |
url |
https://hdl.handle.net/10356/167399 |
_version_ |
1772827032230559744 |