Mid-infrared semiconductor laser for sensing application

Mid-infrared (MIR) semiconductor light amplification by stimulated emission of radiation (LASER) with broadband emission spectrum has gained lots of publicity in recent years. Its broadband feature within the MIR wavelength range paved the way for various important applications. The aim of the proje...

Full description

Saved in:
Bibliographic Details
Main Author: Woon, Ivan Seng Loong
Other Authors: Wang Qijie
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2023
Subjects:
Online Access:https://hdl.handle.net/10356/167614
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Mid-infrared (MIR) semiconductor light amplification by stimulated emission of radiation (LASER) with broadband emission spectrum has gained lots of publicity in recent years. Its broadband feature within the MIR wavelength range paved the way for various important applications. The aim of the project is to focus on the characteristics of high-performance broadband MIR lasers, specifically quantum cascade laser (QCL), and compare QCL with existing technologies. The electrical characteristics were determined via obtaining the light output power-current-voltage (LIV) curve, optical characteristics were derived from the spectroscopy graph and interferogram, and gas sensing application was used to test the application of QCL on existing technologies. The characteristics of QCL were determined using simple setups designed by the lab technicians because it is both efficient and effective in obtaining results. On the other hand, a commercial laser was used for the gas sensing application to ensure relatability and reliability of results. This report includes the research and experimentations done on QCL.