Inventory managing system using quadruple legged robot and robot manipulator

The robotics industry presents an attractive opportunity to improve people’s lives across many touchpoints. Despite monumental leaps in the robotics industry, the usage of robotics in everyday life is sparse. Recent studies reveal that the two most significant hurdles that robotic systems face for r...

全面介紹

Saved in:
書目詳細資料
主要作者: Wang, Rui Xian
其他作者: Xie Lihua
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2023
主題:
在線閱讀:https://hdl.handle.net/10356/167644
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:The robotics industry presents an attractive opportunity to improve people’s lives across many touchpoints. Despite monumental leaps in the robotics industry, the usage of robotics in everyday life is sparse. Recent studies reveal that the two most significant hurdles that robotic systems face for rapid adoption are: economic accessibility and generalizability. Existing robotic systems are too expensive and too specialized to gain traction. In this paper, we will address these concerns by developing a cost-efficient robotic system to perform the complex task of inventory management. With a minimally viable robotic system comprising a quadruple-legged robot and a robotic manipulator, we will demonstrate a wide variety of capabilities, such as localizing an object of interest with centimeter accuracy, projecting a virtual twin of an object of interest, and exhibiting complex robotic behavior such as organization of household objects across multiple platforms. These capabilities are developed through open-source frameworks such as ROS, an open-source robotics framework; Point Cloud Library, an open-source point cloud processing framework; and MoveIt, an open-source robotics motion planning framework, allowing for interoperability with existing robotic systems across a wide variety of purposes. With a no-frills robotic system that offers accurate robotic manipulation and the opportunity for contextual robotic behavior, this project will present an enticing alternative for everyday robotics.