Backdoor attacks against deep image compression via adaptive frequency trigger
Recent deep-learning-based compression methods have achieved superior performance compared with traditional approaches. However, deep learning models have proven to be vulnerable to backdoor attacks, where some specific trigger patterns added to the input can lead to malicious behavior of the models...
محفوظ في:
المؤلفون الرئيسيون: | Yu, Yi, Wang, Yufei, Yang, Wenhan, Lu, Shijian, Tan, Yap Peng, Kot, Alex Chichung |
---|---|
مؤلفون آخرون: | Interdisciplinary Graduate School (IGS) |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/168045 https://cvpr2023.thecvf.com/Conferences/2023 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
Robustness of semi-supervised deep learning model against backdoor attacks
بواسطة: Siew, Jun Ze
منشور في: (2023) -
Efficient and secure federated learning against backdoor attacks
بواسطة: MIAO, Yinbin, وآخرون
منشور في: (2024) -
Deepfake based backdoor attack against face recognition deep neural networks
بواسطة: Tan, Davis Wen Han
منشور في: (2023) -
Lossy intermediate deep learning feature compression and evaluation
بواسطة: Chen, Zhuo, وآخرون
منشور في: (2020) -
Diffense: defense against backdoor attacks on deep neural networks with latent diffusion
بواسطة: Hu, Bowen, وآخرون
منشور في: (2025)