Oligomerization-dependent beta-structure formation in SARS-CoV-2 envelope protein
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. In SARS-CoV-2, the channel-forming envelope (E) protein is almost identical to the E protein in SARS-CoV, and both share an identical α-helical channel-forming domain. Structures for th...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/168552 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. In SARS-CoV-2, the channel-forming envelope (E) protein is almost identical to the E protein in SARS-CoV, and both share an identical α-helical channel-forming domain. Structures for the latter are available in both detergent and lipid membranes. However, models of the extramembrane domains have only been obtained from solution NMR in detergents, and show no β-strands, in contrast to secondary-structure predictions. Herein, we have studied the conformation of purified SARS-CoV-2 E protein in lipid bilayers that mimic the composition of ER-Golgi intermediate compartment (ERGIC) membranes. The full-length E protein at high protein-to-lipid ratios produced a clear shoulder at 1635 cm-1, consistent with the β-structure, but this was absent when the E protein was diluted, which instead showed a band at around 1688 cm-1, usually assigned to β-turns. The results were similar with a mixture of POPC:POPG (2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine/3-glycerol) and also when using an E-truncated form (residues 8-65). However, the latter only showed β-structure formation at the highest concentration tested, while having a weaker oligomerization tendency in detergents than in full-length E protein. Therefore, we conclude that E monomer-monomer interaction triggers formation of the β-structure from an undefined structure (possibly β-turns) in at least about 15 residues located at the C-terminal extramembrane domain. Due to its proximity to the channel, this β-structure domain could modulate channel activity or modify membrane structure at the time of virion formation inside the cell. |
---|