Impact of interannual and multidecadal trends on methane-climate feedbacks and sensitivity

We estimate the causal contributions of spatiotemporal changes in temperature (T) and precipitation (Pr) to changes in Earth's atmospheric methane concentration (CCH4) and its isotope ratio δ13CH4 over the last four decades. We identify oscillations between positive and negative feedbacks, show...

Full description

Saved in:
Bibliographic Details
Main Authors: Cheng, Chin-Hsien, Redfern, Simon Anthony Turner
Other Authors: Asian School of the Environment
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/168648
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We estimate the causal contributions of spatiotemporal changes in temperature (T) and precipitation (Pr) to changes in Earth's atmospheric methane concentration (CCH4) and its isotope ratio δ13CH4 over the last four decades. We identify oscillations between positive and negative feedbacks, showing that both contribute to increasing CCH4. Interannually, increased emissions via positive feedbacks (e.g. wetland emissions and wildfires) with higher land surface air temperature (LSAT) are often followed by increasing CCH4 due to weakened methane sink via atmospheric •OH, via negative feedbacks with lowered sea surface temperatures (SST), especially in the tropics. Over decadal time scales, we find alternating rate-limiting factors for methane oxidation: when CCH4 is limiting, positive methane-climate feedback via direct oceanic emissions dominates; when •OH is limiting, negative feedback is favoured. Incorporating the interannually increasing CCH4 via negative feedbacks gives historical methane-climate feedback sensitivity ≈ 0.08 W m-2 °C-1, much higher than the IPCC AR6 estimate.