Ultra-high-speed accelerator architecture for convolutional neural network based on processing-in-memory using resistive random access memory

Processing-in-Memory (PIM) based on Resistive Random Access Memory (RRAM) is an emerging acceleration architecture for artificial neural networks. This paper proposes an RRAM PIM accelerator architecture that does not use Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters (DACs). A...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wang, Hongzhe, Wang, Junjie, Hu, Hao, Li, Guo, Hu, Shaogang, Yu, Qi, Liu, Zhen, Chen, Tupei, Zhou, Shijie, Liu, Yang
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/169464
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Processing-in-Memory (PIM) based on Resistive Random Access Memory (RRAM) is an emerging acceleration architecture for artificial neural networks. This paper proposes an RRAM PIM accelerator architecture that does not use Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters (DACs). Additionally, no additional memory usage is required to avoid the need for a large amount of data transportation in convolution computation. Partial quantization is introduced to reduce the accuracy loss. The proposed architecture can substantially reduce the overall power consumption and accelerate computation. The simulation results show that the image recognition rate for the Convolutional Neural Network (CNN) algorithm can reach 284 frames per second at 50 MHz using this architecture. The accuracy of the partial quantization remains almost unchanged compared to the algorithm without quantization.