The host-targeting compound peruvoside has a broad-spectrum antiviral activity against positive-sense RNA viruses

Positive-sense RNA viruses modify intracellular calcium stores, endoplasmic reticulum and Golgi apparatus (Golgi) to generate membranous replication organelles known as viral factories. Viral factories provide a conducive and substantial enclave for essential virus replication via concentrating nece...

Full description

Saved in:
Bibliographic Details
Main Authors: Wu, Kan Xing, Yogarajah, Thinesshwary, Loe, Marcus Wing Choy, Kaur, Parveen, Lee, Regina Ching Hua, Mok, Chee Keng, Wong, Yi Hao, Phuektes, Patchara, Yeo, Li Sze, Chow, Vincent T. K., Tan, Yong Wah, Chu, Justin Jang Hann
Other Authors: Lee Kong Chian School of Medicine (LKCMedicine)
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/169688
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Positive-sense RNA viruses modify intracellular calcium stores, endoplasmic reticulum and Golgi apparatus (Golgi) to generate membranous replication organelles known as viral factories. Viral factories provide a conducive and substantial enclave for essential virus replication via concentrating necessary cellular factors and viral proteins in proximity. Here, we identified the vital role of a broad-spectrum antiviral, peruvoside in limiting the formation of viral factories. Mechanistically, we revealed the pleiotropic cellular effect of Src and PLC kinase signaling via cyclin-dependent kinase 1 signaling leads to Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1) phosphorylation and Golgi vesiculation by peruvoside treatment. The ramification of GBF1 phosphorylation fosters GBF1 deprivation consequentially activating downstream antiviral signaling by dampening viral factories formation. Further investigation showed signaling of ERK1/2 pathway via cyclin-dependent kinase 1 activation leading to GBF1 phosphorylation at Threonine 1337 (T1337). We also showed 100% of protection in peruvoside-treated mouse model with a significant reduction in viral titre and without measurable cytotoxicity in serum. These findings highlight the importance of dissecting the broad-spectrum antiviral therapeutics mechanism and pave the way for consideration of peruvoside, host-directed antivirals for positive-sense RNA virus-mediated disease, in the interim where no vaccine is available.