Bernstein-type constants for approximation of |x|α by partial Fourier–Legendre and Fourier–Chebyshev sums
In this paper, we study the approximation of fα(x)=|x|α,α>0 in L∞[−1,1] by its Fourier–Legendre partial sum Sn(α)(x). We derive the upper and lower bounds of the approximation error in the L∞-norm that are valid uniformly for all n≥n0 for some n0≥1. Such an optimal L∞-estimate requires a judiciou...
Saved in:
Main Authors: | Liu, Wenjie, Wang, Li-Lian, Wu, Boying |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/169935 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
On the linear complexity of Legendre sequences
由: Ding, C., et al.
出版: (2014) -
Dạng Legendre và ứng dụng
由: Vũ, Thị Ngọc Mai
出版: (2020) -
Fourier expansion-based differential quadrature and its application to Helmholtz eigenvalue problems
由: Shu, C., et al.
出版: (2014) -
Decentralized nonlinear model predictive control of a multimachine power system
由: Patil, Bhagyesh V., et al.
出版: (2020) -
A Legendre wavelet collocation method for 1D and 2D coupled time-fractional nonlinear diffusion system
由: Faheem, Mo, et al.
出版: (2023)