Counterfactual explanations for machine learning models on heterogeneous data
Counterfactual explanation aims to identify minimal and meaningful changes required in an input instance to produce a different prediction from a given model. Counterfactual explanations can assist users in comprehending the model's current prediction, detecting model unfairness, and providing...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Thesis-Doctor of Philosophy |
اللغة: | English |
منشور في: |
Nanyang Technological University
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/169968 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|