Ultrafast, high-strain, and strong uniaxial hydrogel actuators from recyclable nanofibril networks

Polymer hydrogels mimic biological tissues and are suitable for future lifelike machines. However, their actuation is isotropic, so they must be crosslinked or placed in a turgor membrane to achieve high actuation pressures, severely impeding their performance. Here, it is shown that organizing cell...

Full description

Saved in:
Bibliographic Details
Main Authors: Benselfelt, Tobias, Rothemund, Philipp, Lee, Pooi See
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/170148
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Polymer hydrogels mimic biological tissues and are suitable for future lifelike machines. However, their actuation is isotropic, so they must be crosslinked or placed in a turgor membrane to achieve high actuation pressures, severely impeding their performance. Here, it is shown that organizing cellulose nanofibrils (CNFs) in anisotropic hydrogel sheets leads to mechanical in-plane reinforcement that generates a uniaxial, out-of-plane strain with performance far surpassing polymer hydrogels. These fibrillar hydrogel actuators expand uniaxially by 250 times with an initial rate of 100-130% s-1 , compared to <10 times and <1% s-1 in directional strain rate for isotropic hydrogels, respectively. The blocking pressure reaches 0.9 MPa, similar to turgor actuators, while the time to reach 90% of the maximum pressure is 1-2 min, compared to 10 min to hours for polymer hydrogel actuators. Uniaxial actuators that lift objects 120 000 times their weight and soft grippers are showcased. In addition, the hydrogels can be recycled without a loss in performance. The uniaxial swelling allows adding channels through the gel for local solvent delivery, further increasing the actuation rate and cyclability. Thus, fibrillar networks can overcome the major drawbacks of hydrogel actuators and is a significant advancement towards hydrogel-based lifelike machines.