Directional emission from electrically injected exciton-polaritons in perovskite metasurfaces

We present a new approach to achieving strong coupling between electrically injected excitons and photonic bound states in the continuum of a dielectric metasurface. Here a high-finesse metasurface cavity is monolithically patterned in the channel of a perovskite light-emitting transistor to induce...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Yutao, Tian, Jingyi, Klein, Maciej, Adamo, Giorgio, Ha, Son Tung, Soci, Cesare
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/170323
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We present a new approach to achieving strong coupling between electrically injected excitons and photonic bound states in the continuum of a dielectric metasurface. Here a high-finesse metasurface cavity is monolithically patterned in the channel of a perovskite light-emitting transistor to induce a large Rabi splitting of ∼200 meV and more than 50-fold enhancement of the polaritonic emission compared to the intrinsic excitonic emission of the perovskite film. Moreover, the directionality of polaritonic electroluminescence can be dynamically tuned by varying the source-drain bias, which induces an asymmetric distribution of exciton population within the transistor channel. We argue that this approach provides a new platform to study strong light-matter interactions in dispersion engineered photonic cavities under electrical injection and paves the way to solution-processed electrically pumped polariton lasers.