On the nonexistence of semi-regular relative difference sets
In this paper, we study semi-regular relative difference sets. We give some nonexistence results on abelian (mn,n,mn,m) relative difference sets. In particular, we focus on the case when m is prime and show that, for any fixed integer n≥2, there are at most finitely many primes p for which an abelia...
Saved in:
Main Authors: | Leung, Ka Hin, Schmidt, Bernhard, Zhang, Tao |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/170341 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Nonexistence results on generalized bent functions Zqm→Zq with odd m and q ≡ 2 (mod 4)
由: Leung, Ka Hin, et al.
出版: (2020) -
Open cases for cyclic difference sets : application of weil numbers
由: Tan, Ming Ming
出版: (2013) -
Constructions of semi-regular relative difference sets
由: Leung, Ka Hin, et al.
出版: (2013) -
SOME NONEXISTENCE RESULTS ON STRONG EXTERNAL DIFFERENCE FAMILIES
由: THEO FANUELA PRABOWO
出版: (2021) -
Unique sums and differences in finite Abelian groups
由: Leung, Ka Hin, et al.
出版: (2022)