Unraveling process-microstructure-property correlations in powder-bed fusion additive manufacturing through information-rich surface features with deep learning
A machine learning (ML)–based framework has been developed to optimize the process parameters and unravel the paramount process–microstructure–property (PMP) relationships rapidly and precisely, which is demonstrated using electron beam melting (EBM®)-processed Ti–6Al–4V alloy. The process maps are...
محفوظ في:
المؤلفون الرئيسيون: | Wang, Chengcheng, Chandra, Shubham, Huang, Sheng, Tor, Shu Beng, Tan, Xipeng |
---|---|
مؤلفون آخرون: | School of Mechanical and Aerospace Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/170435 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
A semi-supervised machine learning approach for in-process monitoring of laser powder bed fusion
بواسطة: Nguyen, Ngoc Vu, وآخرون
منشور في: (2023) -
Review of machine learning applications in powder bed fusion technology for part production
بواسطة: Huang, De Jun, وآخرون
منشور في: (2018) -
Laser powder bed fusion for metal additive manufacturing: perspectives on recent developments
بواسطة: Sing, Swee Leong, وآخرون
منشور في: (2021) -
Microstructures and mechanical properties of additively manufactured Fe–21Mn-0.6C TWIP steel using laser powder bed fusion
بواسطة: Chen, Youyun, وآخرون
منشور في: (2024) -
Semi-supervised machine learning of optical in-situ monitoring data for anomaly detection in laser powder bed fusion
بواسطة: Nguyen, Ngoc Vu, وآخرون
منشور في: (2023)