(Mis)leading the COVID-19 vaccination discourse on Twitter: an exploratory study of infodemic around the pandemic
In this work, we collect a moderate-sized representative corpus of tweets (over 200 000) pertaining to COVID-19 vaccination spanning for a period of seven months (September 2020–March 2021). Following a transfer learning approach, we utilize a pretrained transformer-based XLNet model to classify twe...
Saved in:
Main Authors: | Sharma, Shakshi, Sharma, Rajesh, Datta, Anwitaman |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/170558 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Conversational explanations: discussing explainable AI with non-AI experts
由: Zhang, Tong, et al.
出版: (2025) -
Explainable AI for medical over-investigation identification
由: Suresh Kumar Rathika
出版: (2024) -
Effects of interactive explainability on improving trust in chatbots: an S-O-R approach
由: Do, Diem Quynh, et al.
出版: (2025) -
Building more explainable artificial intelligence with argumentation
由: Zeng, Zhiwei, et al.
出版: (2020) -
May I ask a follow-up question? Understanding the benefits of conversations inneural network explainability
由: Zhang, Tong, et al.
出版: (2024)