A jump-gain integral recurrent neural network for solving noise-disturbed time-variant nonlinear inequality problems
Nonlinear inequalities are widely used in science and engineering areas, attracting the attention of many researchers. In this article, a novel jump-gain integral recurrent (JGIR) neural network is proposed to solve noise-disturbed time-variant nonlinear inequality problems. To do so, an integral er...
محفوظ في:
المؤلفون الرئيسيون: | , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/170578 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |