A jump-gain integral recurrent neural network for solving noise-disturbed time-variant nonlinear inequality problems

Nonlinear inequalities are widely used in science and engineering areas, attracting the attention of many researchers. In this article, a novel jump-gain integral recurrent (JGIR) neural network is proposed to solve noise-disturbed time-variant nonlinear inequality problems. To do so, an integral er...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zhang, Zhijun, Song, Yating, Zheng, Lunan, Luo, Yamei
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/170578
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English

相似書籍