Robust multiplexed piecewise affine MPC-based decentralized control of multi-satellite formations using aerodynamic forces
Aerodynamic forces are well suited to be exploited for Low Earth Orbit satellite formation control. However, some critical gaps still exist in control schemes suitable for multi-satellite formation applications, especially when facing atmospheric environmental uncertainties. This paper proposes a sc...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/170685 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-170685 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1706852023-09-26T01:40:08Z Robust multiplexed piecewise affine MPC-based decentralized control of multi-satellite formations using aerodynamic forces Hu, Yuandong Lu, Zhengliang Ling, Keck Voon Liao, Wenhe Zhang, Xiang School of Electrical and Electronic Engineering Engineering::Electrical and electronic engineering Decentralized Control Prediction Algorithms Aerodynamic forces are well suited to be exploited for Low Earth Orbit satellite formation control. However, some critical gaps still exist in control schemes suitable for multi-satellite formation applications, especially when facing atmospheric environmental uncertainties. This paper proposes a scalable and flexible decentralized control scheme for the multi-satellite formation using only aerodynamic forces. This scheme adopts a strategy of updating the control inputs alternatively and is applicable to various formation configurations with different architectures without increasing the computational complexity and communication pressure of each satellite. Aerodynamic forces are changed by reorienting the satellite, and the linear formation control model with pointing angles as inputs is obtained by the PWA (piecewise affine) approximation method. A decentralized control scheme is proposed in which each satellite only has to communicate with its neighboring satellites and update its own inputs. This control scheme allows various generalizations of formation architectures, such as one that includes local chief satellites. To deal with model uncertainties, an improved MPC algorithm named Robust PWA-MMPC is developed using the constraint tightening approach, and then its feasibility and stability issues are analyzed. Hard-in-the-loop simulations are carried out for formation maintenance and reconfiguration, in which aerodynamic force uncertainties are considered. This work was supported in part by the National Natural Science Foundation (NNSF) of China under Grant 61803204 and in part by the Independent Scientific Research Project from Nanjing University of Science and Technology under Grant 3092002103. 2023-09-26T01:40:08Z 2023-09-26T01:40:08Z 2023 Journal Article Hu, Y., Lu, Z., Ling, K. V., Liao, W. & Zhang, X. (2023). Robust multiplexed piecewise affine MPC-based decentralized control of multi-satellite formations using aerodynamic forces. IEEE Transactions On Aerospace and Electronic Systems, 1-20. https://dx.doi.org/10.1109/TAES.2023.3276341 0018-9251 https://hdl.handle.net/10356/170685 10.1109/TAES.2023.3276341 2-s2.0-85160215489 1 20 en IEEE Transactions on Aerospace and Electronic Systems © 2023 IEEE. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Electrical and electronic engineering Decentralized Control Prediction Algorithms |
spellingShingle |
Engineering::Electrical and electronic engineering Decentralized Control Prediction Algorithms Hu, Yuandong Lu, Zhengliang Ling, Keck Voon Liao, Wenhe Zhang, Xiang Robust multiplexed piecewise affine MPC-based decentralized control of multi-satellite formations using aerodynamic forces |
description |
Aerodynamic forces are well suited to be exploited for Low Earth Orbit satellite formation control. However, some critical gaps still exist in control schemes suitable for multi-satellite formation applications, especially when facing atmospheric environmental uncertainties. This paper proposes a scalable and flexible decentralized control scheme for the multi-satellite formation using only aerodynamic forces. This scheme adopts a strategy of updating the control inputs alternatively and is applicable to various formation configurations with different architectures without increasing the computational complexity and communication pressure of each satellite. Aerodynamic forces are changed by reorienting the satellite, and the linear formation control model with pointing angles as inputs is obtained by the PWA (piecewise affine) approximation method. A decentralized control scheme is proposed in which each satellite only has to communicate with its neighboring satellites and update its own inputs. This control scheme allows various generalizations of formation architectures, such as one that includes local chief satellites. To deal with model uncertainties, an improved MPC algorithm named Robust PWA-MMPC is developed using the constraint tightening approach, and then its feasibility and stability issues are analyzed. Hard-in-the-loop simulations are carried out for formation maintenance and reconfiguration, in which aerodynamic force uncertainties are considered. |
author2 |
School of Electrical and Electronic Engineering |
author_facet |
School of Electrical and Electronic Engineering Hu, Yuandong Lu, Zhengliang Ling, Keck Voon Liao, Wenhe Zhang, Xiang |
format |
Article |
author |
Hu, Yuandong Lu, Zhengliang Ling, Keck Voon Liao, Wenhe Zhang, Xiang |
author_sort |
Hu, Yuandong |
title |
Robust multiplexed piecewise affine MPC-based decentralized control of multi-satellite formations using aerodynamic forces |
title_short |
Robust multiplexed piecewise affine MPC-based decentralized control of multi-satellite formations using aerodynamic forces |
title_full |
Robust multiplexed piecewise affine MPC-based decentralized control of multi-satellite formations using aerodynamic forces |
title_fullStr |
Robust multiplexed piecewise affine MPC-based decentralized control of multi-satellite formations using aerodynamic forces |
title_full_unstemmed |
Robust multiplexed piecewise affine MPC-based decentralized control of multi-satellite formations using aerodynamic forces |
title_sort |
robust multiplexed piecewise affine mpc-based decentralized control of multi-satellite formations using aerodynamic forces |
publishDate |
2023 |
url |
https://hdl.handle.net/10356/170685 |
_version_ |
1779156404069728256 |