Robust Bayesian estimation of EEG-based brain causality networks
Objective: The multivariate autoregression (MVAR) model is an effective model to construct brain causality networks. However, the accuracy of MVAR parameter estimation is considerably affected by outliers such as head movements and eye blinks contained in EEG signals, especially in short time window...
Saved in:
Main Authors: | Liu, Ke, Lai, Qin, Li, Peiyang, Yu, Zhuliang, Xiao, Bin, Guan, Cuntai, Wu, Wei |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/170709 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Explicit and implicit knowledge-enhanced model for event causality identification
由: Chen, Siyuan, et al.
出版: (2024) -
Multivariate linear and nonlinear causality tests
由: Bai, Z., et al.
出版: (2014) -
Air passenger forecasting using Neural Granger causal Google trend queries
由: Long, Chan Li, et al.
出版: (2022) -
Reply to Qiu et al.: Hunting for leadership "causal" genes: Mission possible?
由: Song, Z, et al.
出版: (2022) -
Causal classification of spatiotemporal quantum correlations in the absence of active interventions
由: Song, Min Jeong
出版: (2024)