Wireless propagation for ship
Channel sounding is necessary in characterizing the channel for coming out with a more efficient technique to provide quality service. There is little research conducted on characterizing the wide band channels within ship. Therefore the focus of this project is to understand the propagation channe...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/17072 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Channel sounding is necessary in characterizing the channel for coming out with a more efficient technique to provide quality service. There is little research conducted on characterizing the wide band channels within ship. Therefore the focus of this project is to understand the propagation channel inside the ship through some help using the experiment conducted in school.
In understanding the wide band characteristic of the channel inside the ship, both vector network analyser and Direct Spectrum Sliding Correlator Channel Sounding were being employed in obtaining the result required.
Experiments conducted on the diffraction cases presented that signals can travel to the receiver by means of reflection. Depending on the surroundings and position of the transmitter and receiver, there may exist a dominant path between these non line of sight cases. This happen when multipath components converge and combine together at the receiver constructively. In addition, the result also demonstrated that present of line of sight is more important in achieving better quality of service.
The experimental results show that waveguide effects are present inside the lift shaft. Signals are being propagated up and down in the lift shaft, causing same versions of signal to arrive at the receiver in at different timing and phase. This in turn affects the quality of signal being received. The present of lift in between the path act as an obstruction to the propagation and thus reduce the amount of signal received by the receiver. Furthermore, the location of the lift and counter weight will have an impact on the amount of signal received. When the lift and counter weight are aligned, the path clearance becomes smaller, thus affecting the signal power arriving at the receiver to be much lower.
In additional from the lift trial conducted in school, it is concluded that there are many propagation path from the transmitter to the receiver. All these routes taken by the signal will suffer different attenuation and reflection, causing the signal to arrive the receiver at different timing and different phase. As a result, quality of service is being compromise. |
---|