Deep reinforcement learning for secrecy energy efficiency maximization in RIS-assisted networks
This paper investigates the deep reinforcement learning (DRL) for maximization of the secrecy energy efficiency (SEE) in reconfigurable intelligent surface (RIS)-assisted networks. An SEE maximization problem is formulated under constraints of the rate requirement of each (legitimate) user, the powe...
Saved in:
Main Authors: | Zhang, Yichi, Lu, Yang, Zhang, Ruichen, Ai, Bo, Niyato, Dusit |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/170813 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Secrecy throughput maximization for full-duplex wireless powered IoT networks under fairness constraints
由: Rezaei, Roohollah, et al.
出版: (2021) -
Constraints for digitally implemented maximally flat optimum broadband beamformers
由: Thng, I.L., et al.
出版: (2014) -
Joint IT-facility optimization for green data centers via deep reinforcement learning
由: Zhou, Xin, et al.
出版: (2022) -
Introduction to a new array processing concept : orientational beamforming
由: Aye, Su Yee, et al.
出版: (2021) -
Toward intelligent multizone thermal control with multiagent deep reinforcement learning
由: Li, Jie, et al.
出版: (2021)