Application of variational graph encoders as an effective generalist algorithm in computer-aided drug design
Although there has been considerable progress in molecular property prediction in computer-aided drug design, there is a critical need to have fast and accurate models. Many of the currently available methods are mostly specialize in predicting specific properties, leading to the use of many models...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/171414 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Although there has been considerable progress in molecular property prediction in computer-aided drug design, there is a critical need to have fast and accurate models. Many of the currently available methods are mostly specialize in predicting specific properties, leading to the use of many models side-by-side that lead to impossibly high computational overheads for the common researcher. Henceforth, the authors propose a single, generalist unified model exploiting graph convolutional variational encoders that can simultaneously predict multiple properties such as absorption, distribution, metabolism, excretion and toxicity, target-specific docking score prediction, and drug–drug interactions. The use of such a method allows for state-of-the-art virtual screening with a considerable acceleration advantage of up to two orders of magnitude. The minimization of a graph variational encoder’s latent space also allows for accelerated development of specific drugs for targets with Pareto optimality principles considered, and has the added advantage of explainability. |
---|