Dissemination of Pseudomonas aeruginosa blaNDM-1-positive ST308 clone in Singapore

Pseudomonas aeruginosa ST308 clone has been reported to carry carbapenemase genes such as blaIMP and blaVIM but has been rarely associated with blaNDM-1. A total of 199 P. aeruginosa ST308 clinical and environmental isolates obtained between April 2019 and November 2020 from a tertiary-care hospital...

Full description

Saved in:
Bibliographic Details
Main Authors: Prakki, Sai Rama Sridatta, Hon, Pei Yun, Lim, Ze Qin, Thevasagayam, Natascha May, Loy, Song Qi Dennis, De, Partha Pratim, Marimuthu, Kalisvar, Vasoo, Shawn, Ng, Oon Tek
Other Authors: Lee Kong Chian School of Medicine (LKCMedicine)
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/171637
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Pseudomonas aeruginosa ST308 clone has been reported to carry carbapenemase genes such as blaIMP and blaVIM but has been rarely associated with blaNDM-1. A total of 199 P. aeruginosa ST308 clinical and environmental isolates obtained between April 2019 and November 2020 from a tertiary-care hospital in Singapore were characterized using whole-genome sequencing. In addition, 71 blaNDM-1-positive ST308 whole-genome sequences from two other local tertiary-care hospitals in Singapore and 83 global blaNDM-1-negative ST308 whole-genome sequences in public databases were included to assess phylogenetic relationships and perform genome analyses. Phylogenetic analysis and divergent time estimation revealed that blaNDM-1-positive P. aeruginosa ST308 was introduced into Singapore in 2005 (95 % highest posterior density: 2001 to 2008). Core genome, resistome, and analyses of all local blaNDM-1-positive ST308 isolates showed chromosomal integration of multiple antibiotic resistance genes (ARGs) [aac(3)-Id, aac(6')-Il, aadA6, aadA11, dfrB5, msr(E), floR, sul2, and qnrVC1], which was absent in global blaNDM-1-negative ST308 sequences. Most ARGs and virulence genes were conserved across isolates originating from the three different local hospitals. Close genetic relatedness of the blaNDM-1-positive ST308 clinical and environmental isolates suggests cocirculation between the hospital environment and human hosts with the hospital environment as a potential reservoir. Core genome single nucleotide polymorphism analyses revealed possible clonal transmission of blaNDM-1-positive ST308 isolates between the three hospitals over 7 years. Bloodstream isolates accounted for six of 95 (6.3%) clinical isolates. This study reports the introduction of a pathogenic blaNDM-1-positive P. aeruginosa ST308 more than a decade ago in Singapore and warrants surveillance for wider dissemination.