A benchmark of CNN backbones on DINO-DETR performance in object detection

Recent developments in DETR-based models have made significant improvements in training convergence but not small object detection. This paper combines the ConvNeXt and FocalNet backbones with DINO-DETR using timm and detrex, and presents a benchmark and analysis of the resulting model performances...

全面介紹

Saved in:
書目詳細資料
主要作者: Liew, Zon Hur Zhen
其他作者: Lu Shijian
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2023
主題:
在線閱讀:https://hdl.handle.net/10356/172020
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Recent developments in DETR-based models have made significant improvements in training convergence but not small object detection. This paper combines the ConvNeXt and FocalNet backbones with DINO-DETR using timm and detrex, and presents a benchmark and analysis of the resulting model performances on MS-COCO and SODA-D. The results affirm many conclusions from the ConvNeXt and FocalNet papers while exhibiting inconsistencies for FocalNets on SODA-D. Finally, the results show encouraging performance for DINO-DETR with recent backbones on general object detection and the need for further improvement on small object detection with DINO-DETR across all backbones. Further efforts should be made to integrate state-of-the-art features from concurrent developments to produce new benchmarks on small object detection datasets with accessible existing technology.