Metal mediated high performance antimicrobial hydrogel films for wound infection management: Zn, Cu, and Mg versus Ag and Au
Wound infection impedes wound healing and thus poses serious health risks in humans. Wound healing conventionally relies on gauze, lint, plasters, bandages, and cotton wool, with heavy doses of antibiotics in some of them. While silver-based materials have emerged as potential alternatives to antibi...
Saved in:
Main Authors: | , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/172278 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Wound infection impedes wound healing and thus poses serious health risks in humans. Wound healing conventionally relies on gauze, lint, plasters, bandages, and cotton wool, with heavy doses of antibiotics in some of them. While silver-based materials have emerged as potential alternatives to antibiotics in wound care management, they are expensive (gold is an even more expensive antimicrobial agent), and their excessive use may promote silver-resistant microbial strains, and skin argyrosis. Furthermore, excessive wound exudate causes conventional wound dressings to become moistened and painful to remove due to adhesion to the wound. We present non-traditional yet high-performance hydrogel (HG)-based wound films based on polyvinyl alcohol (PVA), chitosan (CS), polyethylene glycol (PEG), and effective antibacterial metal ions (Zn2+, Cu2+, Ag+, Au3+, and Mg2+) for wound infection management. The resulting HG_Cu, HG_Zn, HG_Ag, and HG_Au films demonstrated excellent antibacterial efficacy against S. aureus, A. baumanni, and C. albicans, as well as high water absorption (213%, 169.50%, 338.62%, and 241.22%, respectively), swellability (3.21, 2.69, 4.38, and 3.41, respectively), and outstanding thermal stability. Strikingly, the Cu and Zn integrated hydrogels demonstrated broad-spectrum antimicrobial properties. The findings of this work thus reveal a more cost-effective, sustainable, and environmentally friendly approach to designing high-value-added wound care products. |
---|